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I .  Abstract. 
. .. -_ 
Cosunentr on the application t o  rigid link manipulators of &Metric Control Theory. Rerolved Acceleration 

Control, Oporstiocul Space Control, and Nonlinear kcoupling Theory are glven. and the ersential unity of these 
technlques for externally linearlsing and decoupling end effector dynamics 16 discussed. tixploiting the fact 

manipulators belonging to the class of natural phyrical ryrteu - It Is shown that a necessary and sufficient 
condition for a locally externally linearizing and output decoupling feedback Law t o  exist Is that the end 
effector Jacobian matrix be nonringulsr. Furthermore. this linearizing feedback 1s easy t o  produce. 

2. Introductlon. 

, 
:' that the mass u t r i x  of a rigid link manipulator Is positivo definite - a consequence of rigid link 

,' 

Because of the dlfflculty in controlling rigid Ilnk manipulatora. along with s prlnury concern in 
controlling end effector (EF) motions. I t  is natural t o  ark i f  a nonlinear feedback law exists which will mke 
an EF behave as lf I t  has linear and decoupled dynamics. I t  haa been known st lesrt stnce the early 1970s 
[ 1 ] - [ 5 ]  that exact linearization of Inunipulatorr in joint apace is readily acconpllrhed by the so-called 
Inverse or Computed Torque Technique. Efforts t o  accompllah decoupled linearization of EF motions directly in 
task space began soon thereafter as is evident in the work of 161-1141. 

The work of 161. although concerned only with controlling the tip location of s three-link unipulator in 
the plane, is surprislngly prescient in its approach I n  that i t  proceeds by the three explicit rtepr of 
1)  decoupled linearization of tip behavior: 2 )  stabilization of the resulting tip dynamics; followed by 
I )  trajectory control of the now linearly behaving tip. Such clarity .If approach will only be retrieved in the 
latter work o! f l U l - I Z Z l .  
manipulator redundancy dnd acturntor aaturation. 

The work 161 also prerages future work in its dealing with the probleu of 

e 
With hindsight, the work 161 ran also be viewed as a direct precursor t o  the development of the Resolved 

Acceleration Control (RAC) approarh t o  the end effector tracking problem 171181. RAC essentially extends the 
work of 161 t o  the case of a full six dof manipulator yieldlng lincrrizcd EF poritional error dynamics and 
almost linearized EF attitude error dynamics (the extent to which attitude error dynamics are "almost" 
linearized will be discussed below). The work of [ 7 ] [ 8 ] .  however. did not mnkc c lear  the three rtepr of [61  
and consequently appears t o  have not been appreciated as a technique for performing decoupled exact 
linearization of EF motiona. but rather as a technique for end effector tracking which has (almost) linear 
tracking error dynamics. The fact that the attitude error  dynamics are not corpletely linearized ala0 
apparently obscured the appreciation of RAC as an exactly linearizing control technique. 

The work of [91-[lIl applies Nonlinear Decoupling Theory (NDT) to provide decoupled linearization of a 
me~lipulat~~r EF vith simultaneous pole placement of Lhe linearized EF dynamics. The rbrtruse formulation of 
this rpproach lies apparently discouraged serious Comparison with other approaches. the notable exception being 
! : I ]  where correspondences to RAC and the Computed Torque technique have been noted. The simultaneous pole 
plarrme~it and linearization of EF dynamics represents a blurring of the distinct steps 1 and 2 described above 
!or the approach [ b ] .  

In [12l-IlL], nanipulator Ilynamics .ire expressed in the t a s k  space. or Operational Space of the Ef. The 
resultirtg nonlinear effective end effector dynamic.; a r e  then Iinerrized by the Cumpurrd Torque mthod. fl iur,  
the Operational Space Control ( O C S )  of [ 1 2 ] - ( 1 4 1  can also be viewed as a Generalized Computed Torque 
technique. In 1121 correspondences to RAC and the Computed Torque technique have been noted. 

Rerently, Geometric Control Theory (CCT)  based trchniquer tor exactly externally I ineariring and, 
deroupling general affine-in-the-input nonlinear systems hnvr tieen developed [151-[191. These techniques 
provide constructive sufficient conditions f o r  local decoupled external linearization which. i f  satisfied. 
producer the linearizina feedksck l a w .  CCT has been dpplied to exactly linearizing end effector motions in 
[ 1 9 ] - [ 2 2 1 .  The work of [ 1 9 1 - [ 2 ? 1  also provides a clear and mature control perspective vhirh keeps the 
tollowing ateps distinct: 1 )  Exactly linearize and derouple end effector dynamics t o  a canonical deroupled 
double inteRrator form, i.r. to Brunovsky Canonical F, rm (BCF); 2 )  Effect a stabilizing l o o p  (pole placement 
step); 1 )  Pe-form teedforward precompensation t o  o b t a i n  numi~ial mndcl following performance; ? r )  !nstitute an 
LgR errur (correct ing feedback locp. UnIurLundtely. tu  uiidrrstcincl the theurf?tiCdl uiidrrpiniiiiigs uf GCT requires 
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an oxporuro t o  d i f f o r m t i a l  goontry and L i e  d g o b r a l t i o  group theory ubicb m a t  p rac t i c i ly  ocyinoorr a n  
unlikely t o  b v o .  

I t  can bo rbmm that a l l  of tha .bow r o d n # l y  qui te  d i l l o r m t  approachor load to  tba - Iilwclrirly 
con t ro l  law for o u c t  ox to r iu l  l i nea r i sa t ion  and docoupltng of It m t i o n a  [241. (mi. oquival.neo is rpociflc 
to  tho nonlinoar a y r t o m  eonridorod here. vir .  ry r tom dynamically rimilrr t o  r i g i d  l i n k  mnipulatorm. 
CCZ a p p ~ y  to a much largor clarr tban tbir,  and SO tho oquivalonco to UC and 08c bold. for r y r t w  r o r t r l c t d  
to t h l a  clarr but not i n  g.cl .rd) .  
rufficiont condi t ion for loca1 docoup ld  oxtorrul  1iMarhatiOII and t o  g i w  a rirplo lorn for tbo 1iwarirlly 
control ubicb ia  appl icable  to A broad c l u r  of ro-ea1l.d rutural  pbyoical dpamica l  o y r t w  125) 1261 of ubich 
r moria1 l i nk  m n i p r l a t o r  ir  but  a rpocial  cam. ?or brovity w do not d i rcu r r  a c twtd  redundant a m  - for 
d i acwa ion  of tboro caror. 1.0 [241. 

3. Dynmicr of t i n i t o  Diwnoiocul Natural 8yat.u.  

m and 

Rocofliring th l a  oquivalmco orublor ru t o  glve a r lqlr  wcoarary .d 

Many phyrical  r y r t e v  b v o  f i n i t o  d i m r i o c u l  nonllnoar dynamicr of th. form [25][26]:  

whoro q ovolvor on a unlfold of dlmnslon n. 
A rovoluto Y n i p l a t o r .  

For e u q l o  q c In for a CartosIrn manlpulator. while  q c P for 

Typlcally (1) arise. aa a aolutlon to tho Lgrrngo equatlonr: 

uhere L - T-U, T - 1/2 iTM(q)i is porltive doflnito and autonomua. u l a  a ronrervativo potential  functioo. 
Q - T + F aro generalized forces, and F aro diraipatlvo or COtwtrdnt forcer. 
dynamics aro  obtained and honco manipulator dynamics are proclro1y of tho form (1). 9yat .u  rhich aria. la 
this WAY aro known.am natural syatemr [25][26].  
defltilte. but V(q.q) U C  ( 1 )  has t e r n  which depend on M(q) in a very apocfal way [271-[291. In fact. natural 
system aro nongeneric In the claar of ~ 1 :  affine-In-the-Input nonllnoar ryatomr (381[39]. Although we sh.11 
only exploit the fact that H(q) 1s poritive definite f o r  any q, It 1. worth noting that the nongeneric 
structure of (1) haa recently enablsd important statements to he nude on the existence of time optimal  control 
laws [38]-[401, on the existence of globally stable control law. f271-[331. on the exlrtonce of robuat 
exponentially stable control laws 1341, and on the existence of stablo adaptivo Control law. [15]-[37] fo r  
the natural ryatem (1). 

This ia  eluct ly  hov M n i p d a t o r  

It Is known that for natural system0 not only l a  M(q) positive 

Recognizing the special propertier of the rysten (1). i t  I s  not rurprirlng that rerults yieldin8 externall: 
linearizing behavior can be obtained much more earlly than by application of NDT o r  CCT - theorler which apply 
to the whole general class of smooth affine-in-the-input nonlinear rysteu. 

4 .  End Effector Kineamtic. and Control After Llnearization. 

The system ( 1 )  is assumed to have a read-out n p  of either the fora 

or of the more general form 

where Jodt -4'dt is a general. perhaps noninte~rable. Pfaffian form [25][2b], h(') is C2 [ 4 4 ] [ 4 7 ]  and defined 
on N". ia so- m dimensional output manifold. J or Jo is C1, and in general m and n have different Val-a. 
Otten h(*) is r s o t h  (i.e. C") or Lven a diffeomorphirm vhen :he domain is suitably restricted. 
dlacuaalon4 1-J 4 will mean that J can be either J or .Io. 
y - h(q). 4 = J(q)d vi11 be called the "velocity associated with the output y.'* 
case of ( 3 )  where 4. the velocity associated with y. is just 4 = 9 and ?=Rm giving J = J = ahlaq. A l s o  'ate 
that for the care ( 3 ) .  since n is C z ,  it is still meaningful to talk ahout 9 = 54 and J - ah/aq. J(q): 
TqN" = Rn T h(9)e. but now the case v h e r e 4  f 9 is admitted as a possibi1i:y. 

In subsequenl 
Then for 

Note- that ( 2 )  io a special 
Let the state of system ( 1 )  be (q.4). 
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lor riaid link unlpulatora o v i n 8  in Iuclldoaa 3-rp.c0, CypicallyY - c R6, h r o  x c R 3  8iv.a tb IF - Jo(q)4 an 
lo~mtion* t th. lr liaoar velocity, and a c 13 tho L? an8ular rat. of chng.!t)lt l a  w l l  known 
tho t in  dorlvmticn of any r l o l u l  (1.0. 3 dluna locu l )  nprorontatlon of attltudo, ao that4 I. 

prop.r orttmsom.1 n t r i x  A c ~ 3 x 9 ~  

t a l a  not 

la ( 3 ) .  In this car.. we call J (q) tho "Standard Jacobian." It la also c01on t o  ropreaont I? M tltude by a 

rh.ro the colrraa of A detormlno IF fixod body axos in tho usual WAY. 
Ikr 

It la wll knoun t h t  A - a &ro 
a x v for a11 v c 13.  Thw E? location and kinoutlca aro often given by 

which should ba corp.rod t o  (3). Altornatlvrly, w can take ( c f .  ( 2 ) )  

B c OC R 3  la a mlnlul representatlon of Et attitude (1.0. of tho rotation group SO(3)). 
for a m  function f ( * )  which 1s wny-to-onu or undefined If tho d o v l n  of f(.) on SO(3) Is not proporly 
restricted. That Is. because SO(3) cannot bo covered by a rin#h coordirut8 chrt, 8 is not valid for a11 
poasiblo E? oriontations and there will be slngularlty of attitudo ropresontatlon unlosa w restrict IF 
sttitudo t o  tho roilon of S O 0 1  for which B Is valld 1251 [41][42). 
def h o d  in tho i u g o  of addssible atti tudor.  n U l y  in s o n  I) c R3. (It my bo truo, howvor, t h t  I) - R 3  sa 
In the cas. of Culor-Rodriqwr p a r u t t r m  vhero rlngularlty of a t t i t d o  reprosontation corrospoods to 
flnll I - [ k z ; ) .  Typical n ' r  are roll-pitch-yaw snglos, sxir/angle variables, Eulrr angle., Eulor p s r a ~ t o r s ,  
and Euler-Rodrlquea parawlerr [ 2 5 ] ,  [kl]-[k31. The kineutical rolationshlp botween and Y 1s (ivon by 

ln general B - f(A) 
Thia roatriction then forcer B to bo 

(6 )  

where ll c R3x3 will lose, rank, 1.e. become singular, precisely when I3 becomes a singular representation 
of EP attitude. Note from (3)-(6) that 

= (A on> 
Cenerally. the standard Jscoblan zutrix Jo will become singular only at a manipulator kinemtic singularity. 
in which case J will also be rintplar. Furthermore, J will be singular when 0 = O ( q )  gives a aingularity of 
EF attitude representatlon. Thls compounds the trajectory plannini problem f o r  EF motions. since now w e  must 
plan trajectories which avoid manipulator kinematic singularities and also ensure that D(q) c n. 

Henceforth the system ( 1 ) .  ( 2 )  o r  ( 1 ) .  ( 3 )  wlll be raid to be exactly externally linearized and decoupled 
i t  

This Is somewhat of an abuse of notation ds a consideration of the system (1 ) .  (4) shows. 
yleldr 

For u = ( z : ) ,  4 = u 

( 8 )  
x = u l c R .  3 .  o = u Z c R ,  3 i - s .  

Althoryh EF posit/onal dynamics are decoupled and linearized to ii = u. attitude dynamics Are nonlinear and 
given by & = u2, A I a. 
llnoariro and decouple" attitude error dynamics as was discuaaed in the introduction. In the case of the 
rystem (1). (~1.4 = gives 

Eq. ( 8 )  Is precisely the sense in which RAC can be raid t o  a l a s t  "euctly externally 

(9 1 x = U ~ C R .  3 .. ~ = u ~ c R ,  3 n c a c n ,  3 
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(10) 

which can iadoed bo raid t o  E4 ouctly externally linoarlzod and decoupled. 
U t  aluays bo controlled t o  rawin in 0,  trajectories Involving B may be difficult to vlarulite, and tho 
gowra1iz.d forco, u2, which drivor B n y  bo nonintuitivo. 
rtablo attitude tracking from ( 9 ) .  
ontitiea, whilo u2 io tho or.rirury torqw that we are a11 familiar with. 
attitudo dynamic.. i t  ir poarible t o  w e  (8) to porfom BP attitudo tracking with asymptotically vanlrhing 
attitudo error 171 [el .  

ri = n(e)u, urd a c 0 IO that n - l w  ex i r t r ,  Chon u e  of 

Drawbacks to uring (9) aro tbat 8 

00 tho othor hand, it is obviow how to obtais 
?he advantago to urlng (8) ir that Y and A aro eaaily virculi~od 

Fortunately, derpite tho nodinar  

Note that onco (8) i r  obtainad. it ir  eary LO get (9) by u e  of the rolationrhip (6). If we b v o  5 = o, 

o - u, u - n - ' w  (a - ;I(a)u) 

g i w a  

Therefore, having (E), we can perform attitude control directly on 3 - u2, i = a or YO can tranrform LO i I ti2 
and then control. 

5. Corp.rlron of CCT, NDT, and OSC. 

For brevity, we consider the non-redundant manipulator case, takinR n = 6 i n  (1). and we omit derivrtionr. 
A mure detailed dircurrion is given in [ 2 4 ] .  

Note that the ryrtea (1). ( 5 )  can be written 3s 

or. taking 2 = , (8) 

where the definitions of A. 8 .  and H are obviour. CCT askr: does there exist ( i )  a nonlinear feedback 
t = Q ( 2 )  + B(2)u And ( i i )  a nonlinear change of baria x = X ( Z )  such that ( 1 2 )  i r  placed into BCF7: 

The conatructive sufficient conditions of [19]-[22] can be applred and give the following linearizing and 
decoupling feedback law: 

where 

Although aJ c J, it i r  true that aJq = j q  giving 

Note that J must be nonsingular for  (15) to exist. 
provider sufficient conditions for local linearization. 
for H. J-l, J. and V are required. 

This is consistent with the theory of [19] - [12]  which 
Note also that to implement (15) .  explicit expressions 
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The NDT approach of [ll], constructr the linearizing feedback in the following wry. For the system (13) 
def in8 

The use of 

will transform (121, (13) to y - us i . e .  to (14). 

It ir rtraightforward to 
that in (13) we take 2 - h Y that, for A, B, and C as in (12) and (131,  eq. (17) is precisely eq. ( 1 5 ) .  Note 

and 2 = (41, qls...sqn,qn)T. The latter choice for 2 ir taken in 1111 and 
rerver to obscure the fin M result - namely that (17) and (15) are equlvalent. 

Now consider the OSC approach of [12]-[14]. In (1) let V - B-C where B is the coriolis forcer and C the 
gravity forces. 
consequently det J(q) L 0 on this restriction). 
following giver a local result for external linearization. In [12]-[141, the effective EF dynamics are 
determined to be 

Restrict the domain of the system ( I ) ,  ( 5 )  to ensure that h(*). Is a bijection (and 
This restriction means that, as for DCC and NOT, the 

Recall that to; the system (1). Mq + V - T. the Computed Torque technique 1s to take 7 - MU + V.  yielding 
M(7-U) 0 I) 
restricted domain. Therefore a choice of 

- u s  since M ( q )  > 0,Vq. Similarly, in (18) A(y) > 0 for every y = h(q) where q is on the 

in (18) yields A(y) (y-u) = 0 =) y = U. In this sense the work in [121-[141 can be viewed as a Generalized 
Computed Torque technique. From (18) and ( 1 9 )  i t  is straight forward to determine that T of (19) is exactly 
7 of cq. (15). 

6 .  Derivation of a Feedback L a w  for Local Exact Decoupled External Linearization and Its Relationship to RAC 
and CCT. 

Recall that the system (1).  ( 7 )  or (1). ( 3 )  is of the form 
c 

where in general. it may be that C n, P C Rm. Y C i ,  and 7 C J = ah/aq. 

Definition LEL: The system ( 2 0 )  can be locally exactly ljnearized and decoupled (LEL) over an open 
neighborhood Bm(y')C 
neighborhood of 9'. Bn(q') c N", such that Bm(y') = h(Bn(q')) and if for any u c Rm and q c Bn(q') there exist8 

of y' c .h(N") C r(. with the arm in the configuration q' c h-l(y') if there is an open 
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a nonlinoar foodhack 7 = ?(q,i.u) such that4, the veloefty arsociatod with 7 - h(q) c P(y'))obeysd = u. 

physically attainable I? position. 
only on. of t& porsiblo configurations h-l(y*). 
configuration of a rPnipulator. 
U L  a t  a differont configuration g c  h-l(y*). 

q' c h-'(y') is that 7 (9') c 
ouctly linoariring and docoupling feedback is given by 

Hot. t h t  for an I? LO bo LCL a t  y' i t  muat bo trw that y '  be in tbo rango of h(.), i.0. y '  ~t bo a 
A1.o for a given I? location. y*c h(w"), a wnipulator can phyrically b. in 

If tho ryster  ( 2 0 )  is not U L  a t  y '  in tho  configuration q'c h-l(y*) i t  m y  b. 

' c h (N") in tho configuration 

Thur we can interpret q'c h'l(y') t o  be the actwl phyrical 

Ihoora UL: A nocesrory and sufficient condition for (20) t o  be LBL a t  
be onto, which is true iff I 1 n and rank $q') - m. Furthermre,'tbo locally 

whero i$ is any solution t o  

Uhen m - n t h i s  g i v e r  

Proof. 
u c RR. 

Nocesr i ty :  Suppose t h a t  i - n q ' j ?  + f ( q ' ) d '  = u can be nude to  hold r e g a r d l e s r  of the value of 
This mans t h a t  t h e r e  must e x i s t  q c  Rn such  t h a t  

- - - 
I f  J ( q * )  i s  not onto. then  13 J (q ' )Ulm and I m  J ( q ' )  f R'. 
t h e r e  is no q '  fo r  which (24)  h o l d s ,  y i e l d i n g  a c o n t r a d i c t i o n l  By a s a m p t i o n  j ( q i )  is f u l l  rank 
and onto <I) J ( q ' )  = a h ( q ' ) / a q  i u  f u l l  rank and onto. Since J and J are Cry t h e r e  exists  neighborhood@ Bm(y') 
and Bn(q*) ,  y '  I h ( q * ) ,  such that Bm(y') 
Bn(q ' ) .  

Let u be  such that - y ( q * ) ; '  i u /  In y(q ' ) .  Then .. 
S u f f i c i e n c  

h(Bn(q ' ) )  and such t h a t  j i r  f u l l  rank end onto when r e s t r i c t e d  to 
Now cons ider  any q c Bn(q ' )  and i ts  a s s o c i a t e d  y = h(8)  c Bm(y'). Then,* - j ( q ) q  =) 

- 
Let .$ b e  any solution t o  (22) .  .$ i n  guaranteed t o  ex is t  s i n c e  la J ( q )  = R.. Take T t o  be  (21) .  then 

which w i t h  ( 2 2 )  and ( 2 5 )  g i v e s -  = U. 0 

Coraents :  

1 )  Note t h a t  t h i s  r e s u l t  a p p l i e s  to a l l  systems of :he form (20). of which r i g i d  l i n k  manipuhtors  are a 
s p e c i a l  c a r e .  

2 )  Note t h a t  u i t h  y c fl and T c Rn. t h e  f a c t  t h a t  we need m 5 n can be i n t e r p r e t e d  t o  mean t h a t  
t h e r e  must be  least as many i n p u t s  a s  o u t p u t s .  

- -1 . -1 
3 )  Uhen J = J = ah/aq,  4 = f. and m = n we have that T = -MJ Jb i KI u + V =) i: = u when det J f 0 .  

This is t h e  same r e s u l t  provided by GCT. NDT. and OCS a8 seen I n  t h e  last s e c t i o n .  .. .. 
4 )  Note t h a t  in t h e  proof we f o r c e  q = 6 e r e c i s c l y  like q = u is forced t o  happen i n  t h e  C o q u t e d  Torque 

method. 
(21) .  ( 2 2 )  is seen t o  be a generalization of the  Computed Torque method In  a s o m u h a t  d i f f e r e n t ,  and perhapc 
more i l l u a i n a t i n g ,  way than  OCS. 

I n  f a c t ,  fo r  y = q we have J = I and J = 0 g i v i n g  5 = U. Thus the  e x a c t  l i n e a r i z i n g  cont ro l  of 
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Let us consider the case of EF control given by the mystem (11, (4). llere J - Jo w h e r e 4  I (i) = JOG. 
In this case, when m n e  (23) i s  

t I -MJiljoq + MJilu i V. ( 2 b )  

When det Jo C 0, use of t yields (i) = ci). This is precisely KAC [ 7 1 .  18). Theorem LEL can be interpreted 
as an extension of RAC to the redundant ar case which allows for the use of a minimal representation of 
EF attitude [24]. The more general case 1 n is given by 

By w i n g  the indirect form ( 2 7 ) .  t can be obtaLned, after < has been found, by use of the Newton-Euler 
recursion [ 4 5 ) .  
obtaining Jo and Jo and then solving for E by Gaussian Elimination. 
( 2 7 )  silnws us how to perform 
After exactly linearizing to 
to the form (11) by the use o 10). 

F;urthermore f can be obtained recursively - either directly ( 4 6 1 ,  or by first recur~ively 
The major point t o  be drawn here, is that 

x ct c t rnal linearization without the nerd for YO explicit mrrnipulator model. 
= t$ one can perform EF tracking at this stage [ 7 ] [ 8 1 ,  or one can continue 

When using ( 2 6 )  or ( 2 7 ) .  the only way that rank Jo c m can occur for m 1 n is when the manipulator is at 
a mchonically singular configuration. Recall (section 4) that in the case when a minimal representation of EF 
attitude is used, the resulting Jacobian matrix J will be rank deficient not just for a manipulator 
singularity. but at a configuration which leads to a singularity of attitude presentation. Thus rank 
deficiency of J o  is kinematlcslly cleaner to understand. 
( 2 6 )  or ( 2 7 )  allows two obvious, but important statements to be made: 
boundary (ignoring joint stops), as in the case of a PUMA-type manipulator. exact linearization a t  the boundary 
Is impos3ible; ii) For a nonredundant (6  dof) manipulator with workapace interior singularities. there cannot 
be exact linearization throughout the workspace interior. For a redundant manipulator with workspace interior 
sIngularitIes, it may be possible to avoid workapace interior configurations which cannot be exactly linearized 
by the use of self mtions as described in [ 4 8 ] [ 4 9 1 .  This is related to the multiplicity of solutions 
available for f in ( 2 1 ) .  

The necessity that rank Jo = m in order t o  use 
i) For a manipulator with a workspace 

I t  is interesting to ask just how the control-(23) fulfills the aim of GCT-as stated in ( 1 ? ) - ( 1 4 ) .  
have the nonlinear feedback (takingq = 9 dud J = J )  t = Q(2) + B(2)u = (V-M.Ju-'J6) + (MJ-l)u which when 
applied t o  (121, (13) gives 

We 

5 ({I = (; -+;) ({) (p) U. 

Consider the local nonlinear change of basis given by 

.. 
The fact that 9 = 34 and y = J ? j +  jcj gives 

Writing ( 2 8 )  as 

w e  obtain the BCF 

Of course we are benefiting from the hindsight provided US by CCT 1151- [191.  

3 3  1 
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7. Concluding Remarks 

Recognizing the fundamental unity of RAC, CCT, OSC. and NDT [7]-[22] for exact linearization of 
manipulators. we can focus on their true differences - namely differences in implementation detail and design 
philosophy. 
this particular feedback form is appropriate for manipulator-like systems. 

With the awareness that they all produce essentially the same linearizing feedback. we can ask why 

OCS and RAC exploit the specific structure of such systems. Not surprisingly. the solutions arrived at, 

Yet, since the properties specific to manipulator dynamics ultimately forced 
reflecting the philoraphies and implementation perspectives of the researchers involved. are quite distinct in 
their flavor and presentation. 
the solution, they are fundamental.ly the same. (Actually. apparently only OCS worked with a perspective 
directed specif!cally towards decoupled EC motions. RAC is content to stop at a point just shy of the goal. 
is also interesting that I 121  apparently shows an awareness of the relationship between OCS and RAC, and the 
degree to which RAC can be said to decouple and linearize EF motions). The important point here is that 
researchers consciously exploited the specific properties of 3 system of interest. but without pin-pointing 
precisely what these properties were which made the system amenable to linearizing control. 

I t  

GCT and NDT provide techniques for exactly linearizing general smooth affine-in-the-input dynanrical 
systems. These techniques ignore any specific nongeneric structural properties that a system might h v e  and as 
a consequence the solutions obtained are much less transparent than those of OCS o r  RAC. The strength of these 
approaches, particularly CCT. i r  that Lliry cdn provide necessary and sufficient ?anditions for a system to be 
exactly linearizablc and constructive sufficient conditions which produce the linearizing feedback when 
satisfied. These techniques can be applied t o  systems which defy our abilities t o  intuit o r  comprehend - such 
as manipulators coupled to complex electromechanical actuation devices. Intereatingly, when applied t o  the 
problem of manipulator exact linearization the solutions ohtained can be shown to be eqxivalent to those of RAC 
arid OCS. Again the structural properties of the system forced the solution. Jnce a solution is known t o  
exist, i t  is reasonable to attempt to produce it from mare physical arguments knowing now that the search is 
not fruitless. This leads to a reexamination of OCS and RAC. 

The work of [171-[22] stresses a perspective which serves t o  enable a clearer comparison between lompeting 
techniques f o r  external linearization: Place the system in a standard linear canonicdl form before additional 
control efforts are made - this ensures that the process of linearizing the system is not mixed up with, and 
confused with, the process of stabilizing and controlling it. This perspective greatly aided the comparison of 
CCT, OCS. RAC. and HDT vhich resulted in ( 2 4 1 .  In turn, this comparison focuses attention on the structural 
properties of manipulators. 

Much current research makes i t  apparent that sysLems dynamically similar to rigid link manipulators have 
important structural properties which can be exploited t o  achieve results which are quite strong when compared 
to those availdble for general smooth 3ffiiie-iii-the-iiiputs nonlinear systems [?51-140]. Here we have seen that 
exploiting the nongeneric second order form of system ( 1 )  with dn everywhere positive definite miss matrix . J I I ~  

locally onto readout map enables a simple form for the linearizing feedback. 2' 
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